Inducible Control of Subcellular RNA Localization Using a Synthetic Protein-RNA Aptamer Interaction
نویسندگان
چکیده
Evidence is accumulating in support of the functional importance of subcellular RNA localization in diverse biological contexts. In different cell types, distinct RNA localization patterns are frequently observed, and the available data indicate that this is achieved through a series of highly coordinated events. Classically, cis-elements within the RNA to be localized are recognized by RNA-binding proteins (RBPs), which then direct specific localization of a target RNA. Until now, the precise control of the spatiotemporal parameters inherent to regulating RNA localization has not been experimentally possible. Here, we demonstrate the development and use of a chemically-inducible RNA-protein interaction to regulate subcellular RNA localization. Our system is composed primarily of two parts: (i) the Tet Repressor protein (TetR) genetically fused to proteins natively involved in localizing endogenous transcripts; and (ii) a target transcript containing genetically encoded TetR-binding RNA aptamers. TetR-fusion protein binding to the target RNA and subsequent localization of the latter are directly regulated by doxycycline. Using this platform, we demonstrate that enhanced and controlled subcellular localization of engineered transcripts are achievable. We also analyze rules for forward engineering this RNA localization system in an effort to facilitate its straightforward application to studying RNA localization more generally.
منابع مشابه
Engineering a direct and inducible protein-RNA interaction to regulate RNA biology.
The importance and pervasiveness of naturally occurring regulation of RNA function in biology is increasingly being recognized. A common mechanism uses inducible protein-RNA interactions to shape diverse aspects of cellular RNA fate. Recapitulating this regulatory mode in cells using a novel set of protein-RNA interactions is appealing given the potential to subsequently modulate RNA biology in...
متن کاملTranslation- and SRP-independent mRNA targeting to the endoplasmic reticulum in the yeast Saccharomyces cerevisiae
mRNAs encoding secreted/membrane proteins (mSMPs) are believed to reach the endoplasmic reticulum (ER) in a translation-dependent manner to confer protein translocation. Evidence exists, however, for translation- and signal recognition particle (SRP)-independent mRNA localization to the ER, suggesting that there are alternate paths for RNA delivery. We localized endogenously expressed mSMPs in ...
متن کاملLive-cell imaging of endogenous mRNAs with a small molecule.
Determination of subcellular localization and dynamics of mRNA is increasingly important to understanding gene expression. A new convenient and versatile method is reported that permits spatiotemporal imaging of specific non-engineered RNAs in living cells. The method uses transfection of a plasmid encoding a gene-specific RNA aptamer, combined with a cell-permeable synthetic small molecule, th...
متن کاملSwitching Protein Localization by Site-Directed RNA Editing under Control of Light
Site directed RNA editing is an engineered tool for the posttranscriptional manipulation of RNA and proteins. Here, we demonstrate the inclusion of additional N- and C-terminal protein domains in an RNA editing-dependent manner to switch between protein isoforms in mammalian cell culture. By inclusion of localization signals, a switch of the subcellular protein localization was achieved. This i...
متن کاملDevelopment of fluorescent biosensors probing RNA function
Live cell imaging of RNA or their protein binding partners is crucial to obtain an authentic picture of RNA transcription, processing and trafficking. The development of methods for tracking of specific target RNAs in diverse cellular systems has been approached by different strategies including synthetic dyes, molecular beacons and genetically encoded RNA labels. In this work, we challenged cu...
متن کامل